If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2-7w+1=0
a = 2; b = -7; c = +1;
Δ = b2-4ac
Δ = -72-4·2·1
Δ = 41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{41}}{2*2}=\frac{7-\sqrt{41}}{4} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{41}}{2*2}=\frac{7+\sqrt{41}}{4} $
| 48-8x=18 | | -2f+9=-9+7f | | 5x=7/12 | | x-13(-5)=-65 | | 5s+14=54 | | -6x+-8-x-6=-5x-2x+2+5 | | −56m=45 | | 8x+3=x+52 | | -8-5(9x+8)=4 | | 2z+10=26 | | 3/4x-5/6=-1x-4 | | T=42−0.7t | | 3y+15=117 | | 3-8t=-5t | | 5+0.75x=20+0.5x | | -7+-8-x-6=-5x-2x+2+5 | | 1-6u=-35 | | 6+0,5f=-9 | | 9x-7+6x=8x+5 | | 7y-7y-8=-2+y | | 3.2y-7.4=2.1y+1.5 | | 2w2+7w+-1=0 | | |12+4x|=81 | | 3y-20=79 | | 8(x-5)+6(7-x)=0 | | -3u+1=-5-u | | 2w^2+7w+1=0 | | 8=w+1/8+7w-6/4 | | 3b+9-5b=4b-15 | | 2^2x-6.2^×=16 | | 7y+48=7. | | 6z-1+2z+5=180 |